GEOMETRY/TOPOLOGY QUALIFYING EXAM, JANUARY 2010

- 1. For each of the following pairs of domains in the complex plane, determine whether it is possible to bijectively map one onto the other via a holomorphic (i.e. complex analytic) transformation. If so, find such a transformation, and if not, briefly explain.
 - a) $\{z = x + iy : 0 < x < 1\}$ and $\{0 < |w| < 1\}$.
 - b) $\{|z| < 1\}$ and $\{w = u + iv : v > 0\}$.
- 2. For the function $g: S^2 \to \mathbb{R}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to y^2 z$, determine the critical points, the critical values, and qualitatively describe the level

critical points, the critical values, and qualitatively describe the lever sets.

3. Consider the vector field \vec{v} on \mathbb{R}^2 which is given by

$$|\vec{v}|_{ egin{pmatrix} x \\ y \end{pmatrix} } = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$

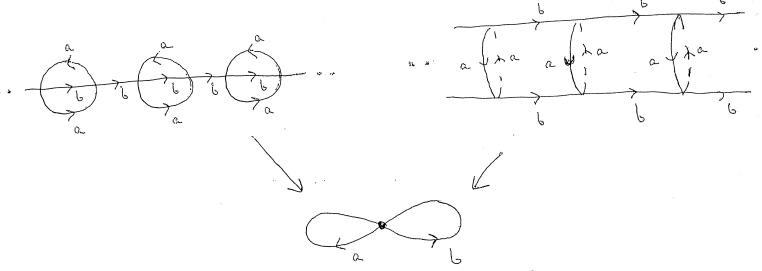
(and which is sometimes also written as

$$|\vec{v}|_{\binom{x}{y}} = \binom{-y}{x}.$$

Find an explicit expression for the flow of this vector field and graph the trajectories.

- 4. a) Determine whether the two form $\omega = zdx \wedge dy$ is exact in \mathbb{R}^3 .
- b) Let M denote the embedded submanifold of \mathbb{R}^3 given by $M = \{x^2 + y^2 = 1 + z^2\}$. Determine whether the restriction of ω to M is exact.
- 5. Apply Mayer-Vietoris to calculate the DeRham cohomology of S^1 , by considering the covering by the open sets $S\setminus\{N\}$ and $S^1\setminus\{S\}$, where N and S denote the north and south poles, respectively. In particular identify a generator for $H^1(S^1)$, using the connecting homomorphism.

6. Let a and b denote the standard simple loops on the figure eight, as in the drawing below. Calculate the group of automorphisms for the following covering spaces of the figure eight:



7. Suppose that Σ is a closed embedded surface in \mathbb{R}^3 with outwarding pointing normal vector \vec{n} . Suppose also that the origin of \mathbb{R}^3 is contained in the bounded component of $\mathbb{R}^3 \setminus \Sigma$. Let \vec{F} denote the vector field

 $\vec{F}(x,y,z) = \frac{x}{r^3} \vec{i} + \frac{y}{r^3} \vec{j} + \frac{z}{r^3} \vec{k}$

where $r^2 = x^2 + y^2 + z^2$.

(a) Use the divergence theorem to show that the flux integral

$$\int_{\Sigma} ec{F} \cdot ec{n} dA$$

equals a flux integral integral over a small sphere S^2_ϵ (of radius ϵ) centered at the origin.

(b) Use (a) to calculate the flux integral.

* Do explain your answers.